Describing the dynamics of recruits and juvenile scleractinian corals using 3d models: a case study from Cayo Mero reef, Morrocoy National Park, Venezuela
##plugins.themes.bootstrap3.article.main##
Abstract
Understanding the dynamics of coral recruitment and post-settlement is fundamental to a better comprehension of coral reef dynamics and recovery. We studied the abundance and survivorship of coral recruits and juveniles together with benthic dynamics at a scale of months and centimeters in Playa Mero reef, a disturbed reef in Morrocoy National Park. For this, we used photogrammetry to monitor eight permanent 50x50 cm quadrats haphazardly deployed every 3–4 months over 18 months. Juveniles and recruits of Agaricia spp. were at least four times more abundant than reef builders such as Orbicella spp. A distance-based linear model showed that rugosity, macroalgae, coral cover, and sand were the most important benthic variables and predicted up to 46% of the spatial and temporal variation of recruit and juvenile corals. The mortality of juvenile corals was higher than net recruitment rates, and only a limited number of genera such as Agariciids, Colpophyllia, Porites, and Scolymia were observed as recruits. Using a logit model, we also found a positive relationship between the mean growth rate and survivorship of juvenile corals (Nagelkerke R2= 0.67). We concluded the lack of recruitment of large reef builders, and the rapid mortality of a limited number of juvenile species, might be a sign of a coral community's failure to increase coral cover.
##plugins.themes.bootstrap3.article.details##
juvenile corals, disturbed reefs, photogrammetry, structural complexity, growth rates, Caribbean
Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. In: Plymouth, UK. 1–214.
Babcock, R., & Mundy, C. (1996). Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. Journal of Experimental Marine Biology and Ecology, 206(1–2), 179–201. https://doi.org/10.1016/S0022-0981(96)02622-6
Babcock, R., & Smith, L. (2000). Effects of sedimentation on coral settlement and survivorship. Marine Biology, I, 1–4.
Bak, R. P. M., & Engel, M. S. (1979). Distribution, abundance and survival of juvenile hermatypic corals (Scleractinia) and the importance of life history strategies in the parent coral community. Marine Biology, 54, 341–352. https://doi.org/10.1007/BF00395440
Bastidas, C., Bone, D., & García, E., M. (1999). Sedimentation rates and metal content of sediments in a Venezuelan coral reef. Marine Pollution Bulletin, 38(1), 16–24. https://doi.org/10.1016/S0025-326X(99)80007-1
Bastidas, C., Croquer, A., & Bone, D. (2006). Shift of dominant species after a mass mortality on a Caribbean reef. In: Proceedings of the 10th Int. Coral Reef Sym Coral Reef Symp. Okinawa, Japan. 989–993.
Birkeland, C., Rowley, D., & Randall, R. H. (1981). Coral recruitment patterns at Guam. In: Fourth International Coral Reef Symposium, Manila. Manila, 339–344.
Bone, D., Spiniello, P., Solana, P., Martín, A., García, E., López, J., La Barbera, A., Gómez, S., Pérez, D., Vera, B., Barreto, M. B., Zoppi, E., Miloslavich, P., Bitter, R., Klein, E., Villamizar, E., Losada, F., & Posada, J. (2005). Estudio integral del sistema Parque Nacional Morrocoy con vías de planes de uso y gestión para su conservación. Caracas.
Box, S. J., & Mumby, P. J. (2007). Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Marine Ecology Progress Series, 342, 139–149. https://doi.org/10.3354/meps342139
Burns, J. H. R., & Delparte, D. (2017). Comparison of commercial structure-from-motion photogrammety software used for underwater three-dimensional modeling of coral reef environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 127–131.
Caley, M. J., Carr, M. H., Hixon, M. A., Hughes, T. P., Jones, G. P., & Menge, B. A. 1996. Recruitment and the local dynamics of open marine populations. Annual Review of Ecology and Systematics, 27, 477–500. https://doi.org/10.1146/annurev.ecolsys.27.1.477
Carleton, J. H., & Sammarco, P. W. (1987). Effects of substratum irregularity on success of coral settlement: quantification by comparative geomorphological techniques. Bulletin of Marine Science, 40(1), 85–98.
Chong-Seng, K. M., Graham, N. A. J., & Pratchett, M. S. (2014). Bottlenecks to coral recovery in the Seychelles. Coral Reefs, 33, 449–461. https://doi.org/10.1007/s00338-014-1137-2
Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: Use manual/Tutorial. Plymouth: PRIMER-E Ltd.
Connell, J. H. (1961). Effects of competition, predation by Thais lapillus, and other factors on natural populations of the Barnacle Balanus balanoides. Ecological Monographs, 31(1), 61–104. https://doi.org/10.2307/1950746
Connell, J. H., Terrence, H., & Wallace, C. C. (1997). A 30-Year Study of Coral Abundance, Recruitment, and Disturbance At Several Scales in Space and Time. Ecological Monographs, 67, 461–488. https://doi.org/10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2
Cróquer, A., & Bone, D. (2003). Las enfermedades en corales escleractínidos: ¿Un nuevo problema en el arrecife de Cayo Sombrero, Parque Nacional Morrocoy, Venezuela? Revista de Biologia Tropical, 51, 167–172.
Croquer, A., Zambrano, S., King, S., Reyes, A., Sellares Blasco, R. I., Valdez Trinidad, A., Villalpando, M., Rodriguez-Jerez, Y., Vargas, E., Cortes-Useche, C., Blanco, M., Calle-Triviño, J., García-Camps, R., Hernández-Orquet, A., Torres, R., Irazabal, I., Díaz, L., Evangelista, Y., & Miyazawa, E. (2022). Stony Coral Tissue Loss Disease and Other Diseases Affect Adults and Recruits of Major Reef Builders at Different Spatial Scales in the Dominican Republic. Gulf and Caribbean Research, 33(1), GCFI1-GCFI13.
https://doi.org/10.18785/gcr.3301.03
Dajka, J. C., Wilson, S. K., Robinson, J. P. W., Chong-Seng, K. M., Alasdair, H., & Graham, N. A. J. (2019). Uncovering drivers of juvenile coral density following mass bleaching. Coral Reefs, 38, 63–649. https://doi.org/10.1007/s00338-019-01785-w
Davis, J. A., & Barmuta, L. A. (1989). An ecologically useful classification of mean and near‐bed flows in streams and rivers. Freshwater Biology, 21(2), 271–282. https://doi.org/10.1111/j.1365-2427.1989.tb01365.x
Doropoulos, C., Ward, S., Roff, G., González-Rivero, M., & Mumby, P. J. (2015). Linking Demographic Processes of Juvenile Corals to Benthic Recovery Trajectories in Two Common Reef Habitats. PLoS ONE, 10(5): e0128535. https://doi.org/10.1371/journal.pone.0128535
Edmunds, P. J. (2007). Evidence for a decadal-scale decline in the growth rates of juvenile scleractinian corals. Marine Ecology Progress Series, 341, 1–13. https://doi.org/10.3354/meps341001
Edmunds, P.J., Bruno, J. F., & Carlon, D. B. (2004). Effects of depth and microhabitat on growth and survivorship of juvenile corals in the Florida Keys. Marine Ecology Progress Series, 278, 115–124. https://doi.org/10.3354/meps278115
Edmunds, P. J., & Carpenter, R. C. 2001. Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences, 98(9), 5067–5071. https://doi.org/10.1073/pnas.071524598
Edmunds, P. J., & Elahi, R. (2007). The demographics of a 15-year decline in cover of the Caribbean reef coral Montastraea annularis. Ecological Monographs, 77(1), 3–18. https://doi.org/10.1890/05-1081
Edmunds, P. J., Steneck, R., Albright, R., Carpenter, R. C., Chui, A. P. Y., Fan, T. Y., Harii, S., Kurihara, H., Legendre, L., Mitarai, S., Muko, S., Nozawa, Y., Padilla-Gamino, J., Price, N. N., Sakai, K., Suzuki, G., van Oppen, M. J. H., Yarid, A., & Gates, R. D. (2015). Geographic variation in long-term trajectories of change in coral recruitment: A global-to-local perspective. Marine and Freshwater Research, 66(7), 609–622. https://doi.org/10.1071/MF14139
Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Marine Pollution Bulletin, 50(2), 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028
Ferrari, R., Figueira, W.F., Pratchett, M.S., Boube, T., Adam, A., Kobelkowsky-Vidrio, T., Doo, S. S., Atwood, T. B., & Byrne, M. (2017). 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7, 16737. https://doi.org/10.1038/s41598-017-16408-z
Ferrari, R., Gonzalez-Rivero, M., & Mumby, P. J. (2012). Size matters in competition between corals and macroalgae. Marine Ecology Progress Series, 467, 77–88. https://doi.org/10.3354/meps09953
Figueira, W., Ferrari, R., Weatherby, E., Porter, A., Hawes, S., & Byrne, M. (2015). Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sensing, 7(12), 16883–16900. https://doi.org/10.3390/rs71215859
Fox, J., & Hong, J. (2009). Effect displays in R for Multinomial and Proportional-Odds Logit Models: Extensions to the effects Package. Journal of Statistical Software, 32(1), 1–24. https://doi.org/10.18637/jss.v032.i01
Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, 3rd Edition.
Friedman, A., Pizarro, O., Williams, S. B., & Johnson-Roberson, M. (2012). Multi-scale measures of rugosity, slope and aspect from benthic stereo image reconstructions. PLoS ONE 7(12), e50440. https://doi.org/10.1371/journal.pone.0050440.
Gallagher, C., & Doropoulos, C. (2017). Spatial refugia mediate juvenile coral survival during coral–predator interactions. Coral Reefs, 36, 51–61. https://doi.org/10.1007/s00338-016-1518-9
García, E. M., Bastidas, C., Cruz-Motta, J. J., & Farina, O. (2011). Metals in waters and sediments of the Morrocoy National Park, Venezuela: increased contamination levels of cadmium over time. Water Air Soil Pollut, 204, 609–621. https://doi.org/10.1007/s11270-010-0450-9
Gutierrez-Heredia, L., Benzoni, F., Murphy, E., & Reynaud, E. G. (2016). End to end digitisation and analysis of three-dimensional coral models, from communities to corallites. PLoS ONE, 11(2), e0149641. https://doi.org/10.1371/journal.pone.0149641
Hartmann, A. C., Sandin, S. A., Chamberland, V. F., Marhaver, K. L., De Goeij, J. M., Vermeij, M. J. A. (2015). Crude oil contamination interrupts settlement of coral larvae after direct exposure ends. Marine Ecology Progress Series, 536, 163–173. https://doi.org/10.3354/meps11437
Hilbe, J. M. (2015). Practical Guide to Logistic Regression. Boca de Ratón: Taylor & Francis Group, LLC. https://doi.org/10.18637/jss.v071.b03
Hilbe, J. M. (2015). Practical Guide to Logistic Regression (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b18678
Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science, 265(5178), 1547–1551. https://doi.org/10.1126/science.265.5178.1547
Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J., & Steneck, R. S. (2010). Rising to the challenge of sustaining coral reef resilience. Trends in Ecology & Evolution, 25(11), 633–642. https://doi.org/10.1016/j.tree.2010.07.011
Hughes, T. P., & Jackson, J. B. C. (1985). Population dynamics and life histories of foliaceous corals. Ecological Monographs, 55(2), 141–166. https://doi.org/10.2307/1942555
Hughes, T. P., & Tanner, J. E. (2000). Recruitment failure , life histories , and long-term decline of Caribbean corals. Ecology, 81(8), 2250–2263. https://doi.org/10.2307/177112
Jaffé, R., Leal, I., Alvarado, J., Gardinali, P. R., Sericano, J. L. (1998). Baseline study on the levels of organic pollulants and heavy metlas in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 36(11), 925–929. https://doi.org/10.1016/s0025-326x(98)00090-3
Kuffner, I. B., Walters, L. J., Becerro, M. A., Paul, V. J., Ritson-Williams, R., & Beach, K. S. (2006). Inhibition of coral recruitment by macroalgae and cyanobacteria. Marine Ecology Progress Series, 323, 107–117. https://doi.org/10.3354/meps323107
Kuklinski, P., Gulliksen, B., Lønne, O. J., & Weslawski, J. M. (2006). Substratum as a structuring influence on assemblages of Arctic bryozoans. Polar Biology, 29, 652–661. https://doi.org/10.1007/s00300-005-0102-5
Laboy-Nieves, E. N., Klein, E., Conde, J. E., Losada, F., Cruz, J. J., & Bone, D. (2001). Mass mortality of tropical marine communities in Morrocoy. Bulletin of Marine Science, 68(2), 163–179.
Latchinian, A., Dopazo, C., Porras, J. A., Reid, J., & Piñango, A. (2017). Elaboración de un Plan de Gestión Ambiental para el Parque Nacional Morrocoy, Venezuela. Gestión y Ambiente, 20(1), 22–37. https://doi.org/10.15446/ga.v20n1.59318
Littler, M., Littler, D., & Taylor, P. (1983). Evolution strategies in a tropical barrier reef system: Functional-form groups of marine macroalgae. Journal of Phycology, 19(2), 229–237. https://doi.org/10.1111/j.0022-3646.1983.00229.x
Luckhurst, E., & Luckhurst, K. (1978). Analysis of the influence of substrate variables on coral reef fish communities. Marine Biology, 49(9), 317–323.
Martínez‐Quintana, Á., Lasker, H. R., & Wilson, A. M. (2023). Three‐dimensional species distribution modelling reveals the realized spatial niche for coral recruitment on contemporary Caribbean reefs. Ecology Letters, 26(9), 1497–1509. https://doi.org/10.1111/ele.14281
McClanahan, T. R., Graham, N. A. J., & Darling, E. S. (2014). Coral reefs in a crystal ball: Predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Current Opinion in Environmental Sustainability, 7, 59–64. https://doi.org/10.1016/j.cosust.2013.11.028
Miller, M. W., Weil, E., & Szmant, A. M. (2000). Coral recruitment and juvenile mortality as structuring factor for reef benthic communities in Biscayne National Park, USA. Coral Reefs, 19, 115–123.
Miyazawa E. (2019). Variabilidad espacial de las comunidades bentónicas arrecifales en Venezuela: la relevancia de las escalas. Universidad Simón Bolívar.
Van Moorsel, G. (1983). Reproductive strategies in two closely related stony corals (Agaricia, Scleractinia). Marine Ecology Progress Series, 13, 273–283. https://doi.org/10.3354/meps013273
Van Moorsel, G. (1985). Disturbance and growth of juvenile corals {Agaricia humilis and Agaricia agaricites, Scleractinia) in natural habitats on the reef of Curagao. Marine Ecology Progress Series, 24, 99–112. https://doi.org/10.3354/meps024099
Mumby, P. J., & Steneck, R. S. (2011). The resilience of coral reefs and its implications for reef management. In: Dubinsky, Z., Stambler, N. (Eds.) Coral Reefs: An Ecosystem in Transition (pp 509–521). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0114-4_29
R Development Core Team. (2019). A language and environment for statistical computing. R Foundation for Statistical Computing.
Ritson-Williams, R., Arnold, S., Fogarty, N., Steneck, R. S., Vermeij, M., & Paul, V. J. (2009). New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contributions to the Marine Sciences, 437–457. https://doi.org/10.5479/si.01960768.38.437
Rogers, C. S., Fitz, H. C., Gilnack, M., Beets, J., & Hardin, J. (1984). Scleractinian coral recruitment patterns at Salt River submarine canyon, St. Croix, U.S. Virgin Islands. Coral Reefs, 3, 69–76. https://doi.org/10.1007/BF00263756
Roth, M. S., & Knowlton, N. (2009). Distribution, abundance, and microhabitat characterization of small juvenile corals at Palmyra Atoll. Marine Ecology Progress Series, 376, 133–142. https://doi.org/10.3354/meps07787
Sato, M. (1985). Mortality and growth of juvenile corals Pocillopora damicornis (Linnaeus). Coral Reefs, 4, 27–33. https://doi.org/10.1007/BF00302201
Sebens, K. P. (1982). Competition for space: Growth rate, reproductive output, and escape in size. The American Naturalist, 120(2), 189–197. https://doi.org/10.1086/283982
Sebens, K. P. (1991). Habitat structure and community dynamics in marine benthic systems. In: Bell, S. S., McCoy, E. D., & Mushinsky, H. R. (Eds) Habitat Structure. Population and Community Biology Series (pp 211–234). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3076-9_11
Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. (2021). Status of coral reefs of the world: 2020.
Szmant, A. M. (1986). Reproductive ecology of Caribbean reef corals. Coral Reefs, 5, 43–53. https://doi.org/10.1007/BF00302170
Trygonis, V., & Sini, M. (2012). PhotoQuad: A dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods. Journal of Experimental Marine Biology and Ecology, 424–425, 99–108. https://doi.org/10.1016/j.jembe.2012.04.018.
Tuttle, L. J., & Donahue, M. J. (2022). Effects of sediment exposure on corals: a systematic review of experimental studies. Environmental Evidence, 11(1), 1–33. https://doi.org/10.1186/s13750-022-00256-0
Urbina-Barreto, I., Chiroleu, F., Pinel, R., Fréchon, L., Mahamadaly, V., Elise, S., Kulbicki, M., Quod, J.-P., Dutrieux, E., Garnier, R., Bruggemann, J. H., Penin, L., & Adjeroud, M. (2021). Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecological Indicators, 121, 107151. https://doi.org/10.1016/j.ecolind.2020.107151
Van Veghel, M. L. J. (1994). Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. I. Gametogenesis and spawning behavior. Marine Ecology Progress Series, 109(2/3), 209–219.
Vermeij, M. J. A. (2005). Substrate composition and adult distribution determine recruitment patterns in a Caribbean brooding coral. Marine Ecology Progress Series, 295, 123–133. https://doi.org/10.3354/meps295123
Vermeij, M. J. A. (2006). Early life-history dynamics of Caribbean coral species on artificial substratum: The importance of competition, growth and variation in life-history strategy. Coral Reefs, 25, 59–71. https://doi.org/10.1007/s00338-005-0056-7
Vermeij, M. J. A., Bakker, J., van der Hal, N., & Bak, R. P. M. (2011). Juvenile coral abundance has decreased by more than 50% in only three decades on a small Caribbean Island. Diversity, 3(3), 296–307. https://doi.org/10.3390/d3030296
Vermeij, M. J. A., & Sandin, S. A. (2008). Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology, 89(7), 1994–2004. https://doi.org/10.1890/07-1296.1
Vermeij, M., Smith, J., Smith, C., Vega Thurber, R., & Sandin, S. A. (2009). Survival and settlement success of coral planulae : independent and synergistic e V ects of macroalgae and microbes. Oceanologia, 159, 325–336. https://doi.org/10.1007/s00442-008-1223-7
Villamizar, E. (2000). Estructura de una comunidad arrecifal en Falcón, Venezuela, antes y después de una mortalidad masiva. Revista de Biologia Tropical, 47(S1), 19–30.
Weil, E. (2003). Coral and coral reefs of Venezuela. Latin American Coral Reefs, 303–330. https://doi.org/10.1016/B978-044451388-5/50014-X
Weiss, M. P., & Goddard, D. A. (1977). Man’s impact on coastal reefs. An example from Venezuela. In: Frost, S. H. Weiss, M. P. & Saunders, J. B. (Eds.) Reefs and Related Carbonates-Ecology and Sedimentology. Studies in Geology No. 4 (pp 11–124). American Association of Petroleum Geologists.
Woesik, R. Van, Iv, W. J. S., & Aronson, R. B. (2014). Lost opportunities: Coral recruitment does not translate to reef recovery in the Florida Keys. Marine Pollution Bulletin, 88(1–2), 110–117. https://doi.org/10.1016/j.marpolbul.2014.09.017
Young, G. C., Dey, S., Rogers, A. D., & Exton, D. (2017). Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLOS ONE, 12(4), e0175341. https://doi.org/10.1371/journal.pone.0175341
Zilberberg, C., & Edmunds, P. J. (2001). Competition among small colonies of Agaricia: the importance of size asymmetry in determining competitive outcome. Marine Ecology Progress Series, 221, 125–133. https://doi.org/10.3354/meps221125
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Article metrics
- 331 Views Summary views
- 372 Downloads PDF Downloads
- 16 Views Html Views