Disentangling diversity patterns in Cuban scorpions (Arachnida: Scorpiones)
##plugins.themes.bootstrap3.article.main##
Abstract
The assembly of communities is often viewed as a process involving the dispersal of species from a regional pool. An oceanic island provides a unique opportunity to test such a hypothesis and many others related to the patterns and processes behind biodiversity. Our aim was to investigate the patterns of scorpion diversity in the Cuban archipelago, using biotic and abiotic variables and their interactions as explanatory features. We use biotic and abiotic variables related to vegetation, climate and topography characterize the landscape of the Cuban archipelago. In this way, we analyze the patterns of beta diversity of the scorpions, verifying the effects of the variables alone and together. Scorpion fauna of the Cuban archipelago comprises 61 species, grouped into nine genera and two families: Buthidae and Diplocentridae. The interplay between biotic and abiotic variables explained scorpion species composition, especially when spatial predictors were considered. Climatic and spatial predictors affected scorpion beta diversity in terms of richness difference. These patterns are discussed emphasizing the role of biotic and abiotic environmental features and their interactions on the mechanisms of scorpion biodiversity generation and maintenance in Cuban archipelago.
##plugins.themes.bootstrap3.article.details##
species distribution, beta diversity, landscape ecology, island biogeography, Greater Antilles
Belmaker, J., & W. Jetz. 2011. Cross–scale variation in species richness–environment associations: Richness–environment scaling. Global Ecology and Biogeography, 20: 464–474.
Borcard, D., & P. Legendre. 2002. All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 51–68.
Borcard, D., P. Legendre, C. Avois-Jacquet, & H. Tuomisto. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85:1826–1832.
Borcard, D., F. Gillet, & P. Legendre. 2018. Numerical ecology with R. Springer.
Borroto-Páez R., & C. A. Mancina. 2017. Biodiversity and conservation of Cuban mammals: past, present, and invasive species. Journal of Mammalogy, 98: 964–985.
Brown, J. L., D. J. Hill, A. M. Dolan, A. C. Carnaval, & A. M. Haywood. 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Science Data, 5: 1–9.
Bryson Jr, R. W., W. E. Savary, A. J. Zellmer, R. B. Bury, & J. E. McCormack. 2016. Genomic data reveal ancient microendemism in forest scorpions across the California Floristic Province. Molecular Ecology, 25: 3731–3751.
Campón, F. F., S. L. Silnik, & L. A. Fedeli. 2014. Scorpion diversity of the Central Andes in Argentinga. The Journal of Arachnology, 42: 163–169.
Carvalho, J. C., P. Cardoso, L. C. Crespo, S. Henriques, R. Carvalho, & P. Gomes. 2011. Determinants of beta diversity of spiders in coastal dunes along a gradient of mediterraneity: Spiders along a gradient of mediterraneity. Diversity and Distributions, 17: 225–234.
Crews, S. C., & L. A. Esposito. 2020. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evolutionary Biology, 20: 1–27.
Denis, D., D. D. Cruz-Flores, & E. Testé. 2018. Biodiversity in Cuba. Global Biodiversity: Volume 4: Selected Countries in the Americas and Australia.
Dionisio-da-Silva, W., A. F. A. Lira, & C. M. R. Albuquerque. 2018. Distinct edge effects and reproductive periods of sympatric litter-dwelling scorpions (Arachnida: Scorpiones) in a Brazilian Atlantic forest. Zoology, 129: 17–24.
Dray, S., P. Legendre, & P. R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196: 483–493.
Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi, et al. 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3–2. Available from https://CRAN.R–project.org/package=adespatial. Accessed 28 November 2018.
Due, A. D., & G. A. Polis. 1986. Trends in scorpion diversity along the Baja California Peninsula. The American Naturalists, 128: 460–468.
Esposito, L. A., & L. Prendini. 2019. Island ancestors and new world biogeography: A case study from the scorpions (Buthidae: Centruroidinae). Science Reports, 9: 3500.
Fergnani, P. N., & A. Ruggiero. 2017. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra–tropical latitudes and history towards the tropics. Plos One, 12: e0184057.
Foerster, S. I. A., A. M. DeSouza, & A. F. A. Lira. 2019. Macroecological approach for scorpions (Arachnida, Scorpiones): β–diversity in Brazilian montane forests. Canadian Journal of Zoology, 97: 914–921.
Foerster, S. Í. A., A. F. A. Lira, & C. G. Almeida. 2020. Vegetation structure as the main source of variability in scorpion assemblages at small spatial scales and further considerations for the conservation of Caatinga landscapes. Neotropical Biology and Conservation, 15: 533–550.
Foord, S. H., V. Gelebe, & L. Prendini L. 2015. Effects of aspect and altitude on scorpion diversity along an environmental gradient in the Soutpansberg, South Africa. Journal of Arid Environments, 113: 114–120.
González-Alonso, H., & L. F. Armas. 2007. Principales regiones de la biodiversidad cubana. In: González-Alonso, H., editor. Biodiversidad de Cuba. Guatemala: Editorial Polymita, p. 56–69.
Hedges, S. B. 2006. Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Annals of the Missouri Botanical Garden, 93: 231–244.
Heino, J. 2013. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution, 3: 344–355.
Hijmans, R. J. 2019. raster: Geographic Data Analysis and Modeling. R package version 2.9–5. https://CRAN.R–project.org/package=raster. Accessed 10 November 2019.
Hof, C., M. B. Araújo, W. Jetz, & C. Rahbek. 2011. Additive threats from pathogens, climate and land–use change for global amphibian diversity. Nature, 480: 516–519.
Irl, S. D. H., D. E. V. Harter, M. J. Steinbauer, D. Gallego Puyol, J. M. Fernández-Palacios, A. Jentsch, & C. Beierkuhnlein. 2015. Climate vs. topography – spatial patterns of plant species diversity and endemism on a high–elevation island. Journal of Ecology, 103: 1621–1633.
Iturralde-Vinent, M. A., & R. D. E. MacPhee. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238: 1–95.
Jetz, W., D. S. Wilcove, & A. P. Dobson. 2007. Projected impacts of climate and land–use change on the global diversity of birds. PLoS Biology, 5: e157.
Jiménez-Valverde, A., A. Baselga, A. Melic, & N. Txasko. 2010. Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conservation and Diversity, 3: 51–60.
Latham, J., R. Cumani, I. Rosati, & M. Bloise. 2014. Global land cover share (GLC–SHARE) database beta–release version 1.0–2014. FAO: Rome, Italy. Acessed 20 May 2019.
Legendre, P. 2014. Interpreting the replacement and richness difference components of beta diversity: Replacement and richness difference components. Global Ecology and Biogeography, 23: 1324–1334.
Legendre, P., & M. J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monography, 69: 1–24.
Lira, A. F. A., R. Badillo-Montaño, A. Lira-Noriega, & C. M. R. Albuquerque. 2020. Potential distribution patterns of scorpions in north–eastern Brazil under scenarios of future climate change. Austral Ecology, 45: 215–228.
Lira, A. F. A., S. Í. A. Foerster, R. P. Salomão, T. J. Porto, C. M. R. Albuquerque, & G. J. B. Moura. 2021a. Understanding the effects of human disturbance on scorpion diversity in Brazilian tropical forests. Journal of Insect Conservation, 25: 147–158.
Lira, A. F. A., J. C. Araújo, F. N. A. A. Rego, S. Í. A. Foerster, & C. M. R. Albuquerque. 2021b. Habitat heterogeneity shapes and shifts scorpion assemblages in a Brazilian seasonal dry tropical forest. Journal of Arid Environments, 186: 104413.
Lira, A. F. A., L. M. Pordeus, R. P. Salomão, R. Badillo-Montaño, & C. M. R. Albuquerque. 2019b. Effects of anthropogenic land–use on scorpions (Arachnida: Scorpiones) in Neotropical forests. International Journal of Tropical Insect Science, 39: 211–218.
Lira, A. F. A., R. P. Salomão, & C. M. R. Albuquerque. 2019a. Pattern of scorpion diversity across a bioclimatic dry–wet gradient in Neotropical forests. Acta Oecologica, 96: 10–17.
Liu, J., M. Vellend, Z. Wang, & M. Yu. 2018. High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift. Journal of Biogeography, 45: 2252–2261.
Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism: American society of naturalists E. O. Wilson award address. The American Naturalists, 175: 623–639.
Mahler, D. L., T. Ingram, L. J. Revell, & J. B. Losos. 2013. Exceptional convergence on the macroevolutionary landscape in Island lizard radiations. Science, 341: 292–295.
Mahler, D. L., L. J. Revell, R. E. Glor, & J. B. Losos. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean Anoles: opportunity and rate in Anolis lizards. Evolution, 64: 2731–2745.
McArdle, B. H., & M. J. Anderson. 2001. Fitting multivariate models to community data: a comment on distance–based redundancy analysis. Ecology, 82: 290–297.
MacArthur, R. H., & E. O. Wilson. 1967. The theory of island biogeography. Princeton: Princeton University Press.
Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature, 203: 853–858.
Mittelbach, G. G., & D. W. Schemske. 2015. Ecological and evolutionary perspectives on community assembly. Trends in Ecology & Evolution, 30: 241–247.
Mittermeier, R. A., P. R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. G. Mittermeier, J. Lamoreux, G. A. B. da Fonseca, P. A. Seligmann, & H. Ford. 2005. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions conservation international, Mexico City. Conservation International Edition.
Moura, M. R., F. Villalobos, G. C. Costa, & P. C. A. Garcia. 2016. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients. Plos One, 11: e0152468.
Naimi, B. 2015. usdm: Uncertainty Analysis for Species Distribution Models. URLhttps:// CRAN.R–project.org/package=usdm. R package version 1.1–15.
Nemésio, A., & H. L. Vasconcelos. 2013. Beta diversity of orchid bees in a tropical biodiversity hotspot. Biodiversity and Conservation, 22: 1647–1661.
Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, et al. 2019. vegan: Community Ecology Package. R package version 2.5–5. https://CRAN.R–project.org/package=vegan. Accessed 20 May 2019.
Padial, A. A., F. Ceschin, S. A. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, J. R. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho, et al. 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PloS One, 9: e111227.
Peres-Neto, P. R., P. Legendre, S. Dray, , & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87: 2614–2625.
Polis, G. A. 1990. The Biology of Scorpions. Stanford: Stanford University Press.
Prendini, L. 2001. Substratum specialization and speciation in southern African scorpion: the effect hypothesis revisited. In: Fet, V. and P. A. Selden, editors. Memoriam Gary A. Polis. Burnham Beeches: British Arachnological Society, p. 113–138.
Prendini, L. 2005. Scorpion diversity and distribution in southern Africa: pattern and process. In: Hubner, B. A., B. Sinclair and K. H. Lampe, editors. African Biodiversity: Molecules, Organisms, Ecosystems. New York: Springer, p. 25–68.
Prendini, L., & T. L. Bird. 2008. Scorpions of the Brandberg Massif, Namibia: Species richness inversely correlated with altitude. African Invertebrates, 49: 77–107.
Qian, H., C. Badgley, & D. L. Fox. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography, 18: 111–122.
Ray-Mukherjee, J., K. Nimon, S. Mukherjee, D. W. Morris, R. Slotow, & M. Hamer. 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution, 5: 320–328.
Richardson, D. M., & R. J. Whittaker. 2010. Conservation biogeography – foundations, concepts and challenges: Conservation biogeography: foundations, concepts and challenges. Diversity and Distribution, 16: 313–320.
Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7: 1–15.
Rodriguez-Artigas, S. M., R. Ballester, & J. A. Corronca. 2016. Factors that influence the beta–diversity of spider communities in northwestern Argentinean Grasslands. PeerJ, 4: e1946.
Rominger, A. J., K. R. Goodman, J. Y. Lim, E. E. Armstrong, L. E. Becking, G. M. Bennett, M. S. Brewer, D. D. Cotoras, C. P. Ewing, J. Harte, et al. 2016. Community assembly on isolated islands: macroecology meets evolution: Community assembly on isolated islands. Global Ecology and Biogeography, 25: 769–780.
Ruggiero, A., & B. A. Hawkins. 2008. Why do mountains support so many species of birds? Ecography, 31: 306–315.
Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford: Oxford University Press.
Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4: 223–251.
Simard, M., N. Pinto, J. B. Fisher, & A. Baccini. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116: G04021.
Socolar, J. B., J. J. Gilroy, W. E. Kunin, & D. P. Edwards. 2016. How Should Beta–Diversity Inform Biodiversity Conservation? Trends in Ecology and Evolution, 31: 67–80.
Soininen, J., J. Heino, & J. Wang. 2018. A meta–analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27: 96–109.
Stein, A., K. Gerstner, & H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17: 866–880.
Teruel, R., & F. Kovařík. 2012. Scorpions of Cuba. Praga: Clairon Production.
Teruel, R., & T. M. Rodríguez-Cabrera. 2020. Revision of the genus Tityopsis Armas, 1974 (Scorpiones: Buthidae). Part 1. General updates and description of four new species. Euscorpius, 304: 1–40.
USGS. 2021. U.S. Geological Survey: Global 30 Arc–Second Elevation (GTOPO30). Accessed 19 November 2021. https://doi.org/10.5066/F7DF6PQS
Valdujo, P. H., A. C. O. Q. Carnaval, & C. H. Graham. 2013. Environmental correlates of anuran beta diversity in the Brazilian Cerrado. Ecography, 36: 708–717.
Vasconcelos, H. L., J. M. S. Vilhena, K. G. Facure, & A. L. K. M. Albernaz. 2010. Patterns of ant species diversity and turnover across 2000 km of Amazonian floodplain forest. Journal of Biogeography, 37: 432–440.
Volschenk, E. S., A. H. Burbidge, B. J. Durrant, & M. S. Harvey. 2010. Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia. Records of the Western Australian Museum, 78: 271–284.
Warburg, M. R., & A. Ben-Horin. 1981. The response to temperature gradients of scorpions from mesic and xeric habitats. Comparative Biochemistry and Physiology, 68: 277–279.
Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, & G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer Science & Business Media.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Article metrics
- 605 Views Summary views
- 421 Downloads PDF Downloads
- 68 Views Html Views