Salinity effects in predation events between Cardisoma guanhumi larvae and Tetrahymena hegewishi
##plugins.themes.bootstrap3.article.main##
Abstract
The relationships between ciliated protozoa and crustacean have been associate with predation events in larvae by several authors. The present study reports predatory events of Cardisoma guanhumi larvae by Tetrahymena hegewishi, considering salinity as an influencing factor. Stage one Zoeas of C. guanhumi were collected and placed in 100 ml recipients. The recipients were set forming a completely randomized block design with ten replications constituting two treatments ruled by their salinity: a freshwater treatment (0.2 ppt) and a control treatment based in the larvae collection pond salinity (3.4 ppt). After 36 hours by see the first group of T. hegewishi trophonts all zoeas were dead. All zoeas were taken to a microscope to count the trophonts of T. hegewishi in a range of 1 mm around. To determine the effect of salinity on the population densities of T. hegewishi a T-test were used. The results of the T–test show significant differences between the treatments, displaying the population of T. hegewishi a considerable decrease when the salinity increase. Due to the negative effect of salinity on the population of T. hegewishi, is demonstrated that this factor can be an alternative to eliminate T. hegewischi from crab cultures, interfering in the proliferation of the ciliates trophonts.
##plugins.themes.bootstrap3.article.details##
ciliate, predation, salinity, zoea
Barrios Saucedo, L. M. 2008. Aspectos biológicos y ecológicos del cangrejo azul (Cardisoma guanhumi, Latreille, 1825) en la Bahía de Cispatá Caribe colombiano (Grado). Universidad de Bogotá Jorge Tadeo Lozano, 138 pp.
Bio-Rad Laboratories Inc. 2021. iCycler iQ Real Time PCR Detection System Instruction Manual. Bio-Rad Laboratories Inc., pp 146.
Canter, H. M. y M. W. Dick. 1994. Eurychasmopsis multisecunda gen. et sp. nov., a parasite of the suctorian ciliate Podophrya. Mycological Research, 98: 105–117.
Canvax Biotech SL. 2012. pSpark® TA DNA Cloning System Product Manual. Canvax Biotech SL, pp 28.
Carnegie, T., K. Donohoe, M. Puente y S. Saini. 2019. Effect of salinity on food vacuole formation in T. thermophila. The Expedition, 9: 1–23.
Chakraborty, C., P. Doss, C. Patra y S. Bandyopadhyay. 2014. DNA barcoding to map the microbial communities: current advances and future directions. Applied Microbiology Biotechnology, 98: 3425–3436.
Chang, Y., G. Liu, L. Guo, H. Liu, D. Yuan, J. Xiong, Y. Ning, C. Fu, y W. Miao. 2014. Cd–Metallothioneins in Three Additional Tetrahymena Species: Intragenic Repeat Patterns and Induction by Metal Ions. Journal of Eukaryota Microbiology, 61: 333–342.
Coyne, R. S. y M. C. Yao. 1996. Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in tetrahymenine ciliates. Genetics, 144: 1479–1487.
De Oliveira-Neto, J. F., M. R. Pie, M. A. Chammas, A. Ostrensky y W. A. Boeger. 2008. Phylogeography of the blue land crab, Cardisoma guanhumi (Decapoda: Gecarcinidae) along the Brazilian coast. Journal of Marine Biology Association, 88: 1417–1423.
Giménez-Hurtado, E., Y. Garcés, Y. González y A. Hurtado. 2015. Densidad poblacional de Cardisoma guanhumi (Latreille, 1825) Crustacea: Brachyura: Gercarcinidae) en el Parque Nacional Ciénaga de Zapata, Cuba. Boletín del Centro de Investigaciones Biológicas, 49: 110–124.
Hwang, J. E., J. Kim, S. Subedi y J. Tamminga. 2019. The Effect of Salinity on the Growth Rate of Tetrahymena thermophila. The Expedition, 9: 1–15.
International Business Machines Corporation (IBM). 2017. IBM SPSS statistics – versión 25. [Programa Informático]. Portsmouth, IBM.
Jung, S. J., E. Y. Im, M. C. Strüder-Kypke, S.-I. Kitamura y P. Woo. 2011. Small subunit ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 gene sequences of 21 strains of the parasitic scuticociliate Miamiensis avidus (Ciliophora, Scuticociliatia). Parasitology Research, 108: 1153–1161.
Kaczanowski, A., C. F. Brunk y S. L. Kazubski. 2016. Cohesion of Clonal Life History, Senescence and Rejuvenation Induced by Autogamy of the Histophagous Ciliate Tetrahymena rostrata. Protist, 167: 490–510.
Larousse, M. y E. Galiana. 2017. Microbial Partnerships of Pathogenic Oomycetes. PLoS Pathogens, 13: 1–7.
Lee, Y. N., Q. Chuah y K. Hatai. 2016. Biological characteristics of an obligate marine strain Lagenidium thermophilum isolated from mud crab (Scylla tranquebarica) eggs in Sabah, Malaysia. Bulletin of the European Association of Fish Pathologists, 36: 126–131.
Lynn, D. H. y F. P. Doerder. 2012. The life and times of Tetrahymena. Methods in cell biology, 109: 9–27.
Méndez-Vilas, A. 2014. Industrial, medical and environmental applications of microorganisms: current status and trends. Wageningen academic publisher, Wageningen, pp 693.
Nielsen, H., E. M. Simon y J. Engberg. 1985. Updating rDNA Restriction Enzyme Maps of Tetrahymena Reveals Four New Intron–Containing Species. The Journal of Protozoology, 32: 480–485.
Nyberg, D. 1981. Three New “Biological” Species of Tetrahymena (T. hegewischi n. sp., T. sonneborni n. sp., T. nipissingi n. sp.) and Temperature Tolerance of Members of the “pyriformis” Complex1. The Journal of Protozoology, 28: 65–69.
Nzytech. 2021. NZYProof DNA polymerase | DNA Polymerases, End–Point PCR. NZYProof DNA polymerase.
Qiagen. 2020a. DNeasy Blood & Tissue Kits Handbook. Qiagen, pp 64.
Qiagen. 2020b. QIAprep® Miniprep Handbook. Qiagen, pp 57.
Roche Sequencing. 2021. KAPA dNTPs. KAPA dNTPs. (/content/rochesequence/en/products-solutions/products/pcr/kapa-dntps.html).
Ruehle, M. D., E. Orias y C. G. Pearson. 2016. Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools. Genetics, 203: 649–665.
Schlegel, M. 1991. Protist evolution and phylogeny as discerned from small subunit ribosomal RNA sequence comparisons. European Journal of Protistology, 27: 207–219.
Selvi, M., S. Afandi y U. A. Maria. 2019. Effect of Antifungal Treflan And Lentil Essential Oil Disc Inhibition Methods On Lagenidium Callinectes. Russian Journal of Agricultural and Socio-Economic Sciences, 89: 27–31.
Sigma-Aldrich. 2021. Sanger Sequencing Steps | DNA Sequencing. Sigma-Aldrich. (https://www.sigmaaldrich.com/technical-documents/articles/biology/sanger-sequencing.html).
Thermo Fisher Scientific Inc. 2010. NanoDrop ND-1000 Spectrophotometer V3,8 User’s MAnual.
Untergasser, A., H. Nijveen, X. Rao, T. Bisseling, R. Geurts y J. A. M. Leunissen. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research, 35: 71–74.
U.S. National Library of Medice. 2021. Nucleotide BLAST: Search nucleotide databases using a nucleotide query. Blast. (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_ TYPE=BlastSearch).
Van de Peer, Y., J.-M. Neefs, P. De Rijk y R. De Wachter. 1993. Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochemical Systematics and Ecology, 21: 43–55.
Van West, P. y G. W. Beakes. 2014. Animal pathogenic Oomycetes. Fungal Biology, 118: 525–526.
Washburn, J. O., D. E. Egerter, J. R. Anderson y G. A. Saunders. 1988. Density reduction in larval mosquito (Diptera: Culicidae) populations by interactions between a parasitic ciliate (Ciliophora: Tetrahymenidae) and an opportunistic fungal (Oömycetes: Pythiaceae) parasite. Journal of medical entomology, 25: 307–314.
Wilkes, D. E., N. Bennardo, C. W. C. Chan, Y.-L. Chang, E. O. Corpuz, J. DuMond, J. A. Eboreime, J. Erickson, J. Hetzel, E. E. Heyer, M. J. Hubenschmidt, E. Kniazeva, H. Kuhn, M. Lum, A. Sand, A. Schep, O. Sergeeva, N. Supab, C. R. Townsend, L. V. Ryswyk, H. E. Watson, A. E. Wiedeman, V. Rajagopalan y D. J. Asai. 2009. Identification and Characterization of Dynein Genes in Tetrahymena, pp. 11–30. In Methods in Cell Biology. Elsevier.
Xiong, J., W. Yang, K. Chen, C. Jiang, Y. Ma, X. Chai, G. Yan, G. Wang, D. Yuan, Y. Liu, S. L. Bidwell, N. Zafar, M. Hadjithomas, V. Krishnakumar, R. S. Coyne, E. Orias y W. Miao. 2019. Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena. PLoS Biology, 17: 2297–2302.
Ye, A. J. y D. P. Romero. 2002. Phylogenetic relationships amongst tetrahymenine ciliates inferred by a comparison of telomerase RNAs. International Journal of Systematic and Evolutionary Microbiology, 52: 2297–2302.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Article metrics
- 412 Views Summary views
- 376 Downloads PDF Downloads
- 131 Views Html Views