Elevational gradients do not affect thermal tolerance at local scale in populations of livebearing fishes of the genus Limia (Cyprinodontiformes: Poeciliinae)
##plugins.themes.bootstrap3.article.main##
Abstract
One of the main assumptions of Janzen’s mountain passes hypothesis is that due the low overlap in temperature regimes between low and high elevations in the tropics, organisms living in high-altitude evolve narrow tolerance for colder temperatures while low-altitude species develop narrow tolerance for warmer temperatures. Some studies have questioned the generality of the assumptions and predictions of this hypothesis suggesting that other factors different to temperature gradients between low and high elevations may explain altitudinal distribution of species in the tropics. In this study we test some predictions of the Janzen’s hypothesis at local scales through the analysis of the individual thermal niche breadth in populations of livebearing fishes of the genus Limia and its relationship with their altitudinal distribution in some islands of the Greater Antilles. We assessed variation in tolerance to extreme temperatures (measured as critical thermal minimum (CTmin) and maximum (CTmax) and compared thermal breadth for populations of eight species of Limia occurring in three Caribbean islands and that occupy different altitudinal distribution. Our results showed that species analyzed had significant differences in thermal limits and ranges. Generally, species distributed in high and low elevations did not differ in thermal limits and showed a wider range of thermal tolerance. However, species living in mid-elevations had narrower range of temperature tolerance. We found no significant effect of phylogeny on CTmin, CTmax and thermal ranges among species. This study did not provide evidence supporting Janzen’s hypothesis at a local scale since thermal tolerance and altitudinal distribution of Limia species were not related to temperature gradients expected in nature. Phylogeny also did not explain the patterns we observed. We suggest that biotic factors such as species interactions, diet specializations, and others should be considered when interpreting current distribution patterns of Limia species.
##plugins.themes.bootstrap3.article.details##
Caribbean, elevation, species distribution, temperature
Beitinger, T. L., W. A. Bennett, & R. W. McCauley. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58: 237–275.
Buckley, L. B., & R. B. Huey. 2016. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Global Change Biology, 22: 3829–3842. https://doi:10.1111/gcb.13313
Burgess, G. H., & R. Franz. 1989. Zoogeography of the Antillean freshwater fish fauna. In: Woods, C. A. & F. E. Sergile (Eds) Biogeography of the West Indies: Patterns and Perspectives. CRF Press, Boca Raton FL, 263–304.
Carvajal-Quintero, J. D., F. Escobar, F. Alvarado, F. A. Villa-Navarro, U. Jaramillo-Villa, & J. A. Maldonado-Ocampo. 2015. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5 (13): 2608–2620.
Chanthy, P., R. J. Martin, R. V. Gunning, & N. R. Andrew. 2012. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Frontiers in Physiology, 3: 465. https://doi:10.3389/fphys.2012.00465
Coelho, M. T. P., J. F. B Rodrigues, J. A. F. Diniz-Filho, & T. F. Rangel. 2019. Biogeographical history constrains climatic niche diversification without adaptive forces driving evolution. Journal of Biogeography, 46: 1020–1028. https://doi:10.1111/jbi.13553
Cowles, R. B., & C. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83: 265–296.
Culumber, Z. W., D. B. Shepard, S. W. Coleman, G. G. Rosenthal, & M. Tobler. 2012. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus). Journal of Evolutionary Biology, 25: 1800–1814.
Fischer, C., & I. Schlupp. 2009. Differences in thermal tolerance in coexisting sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei). Journal of Fish Biology, 74: 1662–1668. https://doi:10.1111/j.1095-8649.2009.02214.x
Ghalambor, C. K., R. B. Huey, P. R. Martin, J. J. Tewksbury, & G. Wang. 2006. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 16 (1): 5–17. https://doi.org/10.1093/icb/icj003
Gilbert, P. S., J. Wu, M. W. Simon, J. S. Sinsheimer, & M. E. Alfaro. 2018. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Molecular Phylogenetics and Evolution, 126: 116–128. https://doi:10.1016/j.ympev.2018.03.033
Gingras, B., E. Mohandesan, D. Boko, & W. F. Tecumseh. 2013. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. BMC Evolutionary Biology, 13: 134. https://doi.org/10.1186/1471-2148-13-134
Graham, C. H, A. C. Carnaval, C. D. Cadena, K. R. Zamudio, T. E. Roberts, & J. L. Parra. 2014. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37: 711–719. https://doi.org/10.1111/ecog.00578
Griffis, M. R., & R. G. Jaeger. 1998. Competition leads to an extinction–prone species of salamander: interspecific territoriality in a metapopulation. Ecology, 79: 2494–2502.
Hamilton, A. 2001. Phylogeny of Limia (Teleostei: Poeciliidae) based on NADH dehydrogenase subunit 2 sequences. Molecular Phylogenetics and Evolution, 19 (2): 277–289. https://doi:10.1006/mpev.2000.0919
Hijmans, R. J. 2020. Raster: Geographic Data Analysis and Modeling. R package version 3.0–12. https://CRAN.R–project.org/package=raster (accessed: 06/20/2020).
Hua, X. 2016. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen’s hypothesis. Proceedings Biological Sciences, 283 (1835): 20160349. https://doi.org/10.1098/rspb.2016.0349
Janzen, D. H. 1967. Why mountain passes are higher in the tropics. American Naturalist, 101: 233–247. https://doi.org/10.1086/282487
Jaramillo-Villa, U., J. A. Maldonado-Ocampo, & F. Escobar. 2010. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76: 2401–2417. https://doi.org/10.1111/j.1095-8649.2010.02629.x
Kamilar, J. M., & N. Cooper. 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society of London Biological Sciences, 368: 20120341. http://dx.doi.org/10.1098/rstb.2012.0341
Kingsolver, J. G., & J. Umbanhowar. 2018. The analysis and interpretation of critical temperatures. Journal of Experimental Biology, 2018 (221). https://jeb167858. doi:10.1242/jeb.167858
Layne, J. R. Jr., & D. L. Claussen. 1982. The time courses of CTMax and CTMin acclimation in the salamander Desmognathus fuscus. Journal of Thermal Biology, 7 (3): 139–141.
Leiva, F. P., P. Calosi, & W. C. E. P. Verberk. 2019. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water–and air–breathers. Philosophical Transactions of the Royal Society of London Biological Sciences, 374: 20190035. http://dx.doi.org/10.1098/rstb.2019.0035
Lowe, C. H., & V. J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science, 122: 73–74.
Lutterschmidt, W. I., & V. H. Hutchison. 1997. The critical thermal maximum: data to support the onset of muscle spasm as the definitive end point. Canadian Journal of Zoology, 75: 1553–1560.
McCain, C. M. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecology Letters, 12: 550–560. https://doi.org/10.1111/j.1461 0248.2009.01308.x
Molina-Venegas, R., & M. A. Rodriguez. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology, 17 (53): 1–10.
Moyano, M., C. Candebat, Y. Ruhbaum, S. Alvarez-Fernandez, G. Claireaux, J. L. Zambonino- Infante, & M. A. Peck. 2017. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. Plos One, 12 (7): e0179928. https://doi.org/10.1371/journal.pone.0179928
Munkemueller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schiffers, & W. Thuiller. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3: 743–756. https://doi:10.1111/j.2041-210X.2012.00196.x
Muñoz, M. M., J. E. Wegener, & A. C. Algar. 2014. Untangling intra– and interspecific effects on body size clines reveals divergent processes structuring convergent patterns in Anolis lizards. American Naturalist, 184: 636–646.
Muñoz, M. M., & B. L. Bodensteiner. 2019. Janzen’s hypothesis meets the Bogert effect: Connecting climate variation, thermoregulatory behavior and rates of physiological evolution. Integrative Organismal Biology, 1–12. https://doi:10.1093/iob/oby002
Navas, C. A. 1996. Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108: 617–626. https://doi.org/10.1007/BF00329034
Navas, C. A., J. M. Carvajalino?Fernández, L. P. Saboyá?Acosta, L. A. Rueda?Solano, & M. A. Carvajalino?Fernández. 2013. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Functional Ecology, 27: 1145–1154. https://doi.org/10.1111/1365-2435.12106
Niehaus, A. C., M. J. Jr. Angilletta, M. W. Sears, C. E. Franklin, & and R. S. Wilson. 2012. Predicting the physiological performance of ectotherms in fluctuating thermal environments. Journal of Experimental Biology, 215: 694–701. https://doi:10.1242/jeb.058032
Ohlberger, J., T. Mehner, G. Staaks, & F. Hölker. 2008. Temperature?related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Functional Ecology, 22: 501–508.
Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London Biological Sciences, 255: 37–45. https://doi:10.1098/rspb.1994.0006
Payne, N. L., J. A. Smith, D. E. van der Meulen, M. D. Taylor, Y. Y. Watanabe, A. Takahashi, T. A. Marzullo, C. A. Gray, G. Cadiou, & I. M. Suthers. 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology, 30 (6): 903–912. https://doi.org/10.1111/1365-2435.12618
Pintanel, P., M. Tejedo, S. R. Ron, G. A. Llorente, & A. Merino-Viteri. 2019. Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. Journal of Biogeography, 46: 1664–1675. https://doi.org/10.1111/jbi.13596
Polato, N. R., B. A. Gill, A. A. Shah, M. M. Gray, K. L. Casner, A. Barthelet, & K. R. Zamudio. 2018. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences, 115: 12471–12476. https://doi. org/10.1073/pnas.18093 26115
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R–project.org/.
Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–222. https://doi:10.1111/j.2041– 210X.2011.00169.x
Rivas, L. R. 1980. Eight new species of poeciliid fishes of the genus Limia from Hispaniola. Northeast Gulf Science, 4 (1): 28–38.
Robinson, S. K., & J. Terborgh. 1995. Interspecific aggression and habitat selection by Amazonian birds. Journal of Animal Ecology, 64: 1–11.
Rodríguez, C. M. 1997. Phylogenetic analysis of the tribe Poeciliini (Cyprinodontiformes: Poeciliidae). Copeia, 1997 (4): 663–679.
Rodriguez-Silva, R., P. Torres-Pineda, & J. Josaphat. 2020. Limia mandibularis, a new livebearing fish (Cyprinodontiformes: Poeciliidae) from Lake Miragoane, Haiti. Zootaxa, 4768 (3): 395–404. https://doi.org/10.11646/zootaxa.4768.3.6
Rodriguez, R. S., P. Torres-Pineda, C. M. Rodriguez, & I. Schlupp. 2020. Distribution range extension of Yaguajal Limia, Limia yaguajali (Teleostei: Poeciliidae) from north of the Dominican Republic, Hispaniola. Novitates Caribaea, 15: 127–133.
Sarmiento, G. 1986. Ecological features of climate in high tropical mountains. (11–46). In: Vuilleumier, F., & M. Monasterio (Eds.). High altitude tropical biogeography. Oxford University Press, New York, 649 pp.
Snyder, G. K., & W. W. Weathers. 1975. Temperature adaptations in amphibians. American Naturalist, 109: 93–101.
Spotila, J. R. 1972. Role of temperature and water in the ecology of lungless salamanders. Ecological Monographs, 42 (1972): 95–125.
Sunday, J. M., A. E. Bates, & N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of Biological Sciences, 278: 1823–1830.
Tongnunui, S, & F. W. H. Beamish. 2017. Critical thermal maximum, temperature acclimation and climate effects on Thai freshwater fishes. Environment Asia, 10 (1): 109–117.
Valdivieso, D., & J. R. Tamsitt. 1974. Thermal relationships of the neo– tropical frog Hyla labialis (Anura: Hylidae). Life Sciences Occasional Papers Royal Ontario Museum, 26: 1–10.
Van Berkum, F. H. 1988. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. American Naturalist, 132: 327–343.
Weaver, P. F., O. Tello, J. Krieger, A. Marmolejo, K. F. Weaver, J. V. Garcia, & A. Cruz. 2016a. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae). Biology Open, 5: 1093–1101.
Weaver, P. F, A. Cruz, S. Johnson, J. Dupin, & K. F. Weaver. 2016b. Colonizing the Caribbean: biogeography and evolution of livebearing fishes of the genus Limia (Poeciliidae). Journal of Biogeography, 43: 1808–1819. https://doi:10.1111/jbi.12798
Wollenberg, K. C., I. J. Wang, R. E. Glor, & J. B. Losos. 2013. Determinism in the diversification of Hispaniolan trunk–ground anolis (Anolis cybotes species complex). Evolution, 67: 3175–3190. https://doi.org/10.1111/evo.12184
Yanar, M., S. Erdo?an, & M. Kumlu. 2019. Thermal tolerance of thirteen popular ornamental fish species. Aquaculture, 501: 382–386. https://doi.org/10.1016/j.aquaculture.2018.11.041
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Article metrics
- 2832 Views Summary views
- 317 Downloads PDF Downloads
- 59 Views Html Views