##plugins.themes.bootstrap3.article.main##

André Felipe de Araújo Lira Stênio Ítalo Araújo Foerster Adriano Medeiros DeSouza Luis F. de Armas

Resumen

El ensamblaje de comunidades se considera a menudo como un proceso que implica la dispersión de especies procedentes de una fuente regional. Una isla oceánica brinda una oportunidad única para probar tal hipótesis y muchas otras relacionadas con los patrones y procesos detrás de la biodiversidad. Nuestro objetivo fue investigar los patrones de diversidad de los escorpiones en el archipiélago cubano, utilizando variables bióticas y abióticas y sus interacciones como características explicativas. Se utilizaron variables bióticas y abióticas relacionadas con la vegetación, el clima y la topografía que caracterizan el paisaje del archipiélago cubano. De esta forma, se analizaron los patrones de diversidad beta de los escorpiones, verificando los efectos de las variables solas y juntas. La fauna de escorpiones del archipiélago cubano comprende 61 especies, agrupadas en nueve géneros y dos familias: Buthidae y Diplocentridae. La interacción entre las variables bióticas y abióticas explicó la composición de las especies, especialmente cuando se consideraron predictores espaciales. Los predictores climáticos y espaciales afectaron la diversidad beta en términos de diferencia de riqueza. Estos patrones se discuten enfatizando el papel de las características ambientales bióticas y abióticas y sus interacciones en los mecanismos de generación y mantenimiento de la biodiversidad de los escorpiones en el archipiélago cubano.

##plugins.themes.bootstrap3.article.details##

Palabras Clave

distribución de especies, diversidad beta, ecología del paisaje, biogeografía insular, Antillas Mayores

Referencias
Alves, D. M. C. C., J. A. F. Diniz-Filho, K. da Silva e Souza, S. F. Gouveia, & F. Villalobos. 2018. Geographic variation in the relationship between large-scale environmental determinants and bat species richness. Basic and Applied Ecology, 27: 1–8.

Belmaker, J., & W. Jetz. 2011. Cross–scale variation in species richness–environment associations: Richness–environment scaling. Global Ecology and Biogeography, 20: 464–474.

Borcard, D., & P. Legendre. 2002. All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153: 51–68.

Borcard, D., P. Legendre, C. Avois-Jacquet, & H. Tuomisto. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85:1826–1832.

Borcard, D., F. Gillet, & P. Legendre. 2018. Numerical ecology with R. Springer.

Borroto-Páez R., & C. A. Mancina. 2017. Biodiversity and conservation of Cuban mammals: past, present, and invasive species. Journal of Mammalogy, 98: 964–985.

Brown, J. L., D. J. Hill, A. M. Dolan, A. C. Carnaval, & A. M. Haywood. 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Science Data, 5: 1–9.

Bryson Jr, R. W., W. E. Savary, A. J. Zellmer, R. B. Bury, & J. E. McCormack. 2016. Genomic data reveal ancient microendemism in forest scorpions across the California Floristic Province. Molecular Ecology, 25: 3731–3751.

Campón, F. F., S. L. Silnik, & L. A. Fedeli. 2014. Scorpion diversity of the Central Andes in Argentinga. The Journal of Arachnology, 42: 163–169.

Carvalho, J. C., P. Cardoso, L. C. Crespo, S. Henriques, R. Carvalho, & P. Gomes. 2011. Determinants of beta diversity of spiders in coastal dunes along a gradient of mediterraneity: Spiders along a gradient of mediterraneity. Diversity and Distributions, 17: 225–234.

Crews, S. C., & L. A. Esposito. 2020. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evolutionary Biology, 20: 1–27.

Denis, D., D. D. Cruz-Flores, & E. Testé. 2018. Biodiversity in Cuba. Global Biodiversity: Volume 4: Selected Countries in the Americas and Australia.

Dionisio-da-Silva, W., A. F. A. Lira, & C. M. R. Albuquerque. 2018. Distinct edge effects and reproductive periods of sympatric litter-dwelling scorpions (Arachnida: Scorpiones) in a Brazilian Atlantic forest. Zoology, 129: 17–24.

Dray, S., P. Legendre, & P. R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196: 483–493.

Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi, et al. 2018. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3–2. Available from https://CRAN.R–project.org/package=adespatial. Accessed 28 November 2018.

Due, A. D., & G. A. Polis. 1986. Trends in scorpion diversity along the Baja California Peninsula. The American Naturalists, 128: 460–468.

Esposito, L. A., & L. Prendini. 2019. Island ancestors and new world biogeography: A case study from the scorpions (Buthidae: Centruroidinae). Science Reports, 9: 3500.

Fergnani, P. N., & A. Ruggiero. 2017. The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra–tropical latitudes and history towards the tropics. Plos One, 12: e0184057.

Foerster, S. I. A., A. M. DeSouza, & A. F. A. Lira. 2019. Macroecological approach for scorpions (Arachnida, Scorpiones): β–diversity in Brazilian montane forests. Canadian Journal of Zoology, 97: 914–921.

Foerster, S. Í. A., A. F. A. Lira, & C. G. Almeida. 2020. Vegetation structure as the main source of variability in scorpion assemblages at small spatial scales and further considerations for the conservation of Caatinga landscapes. Neotropical Biology and Conservation, 15: 533–550.

Foord, S. H., V. Gelebe, & L. Prendini L. 2015. Effects of aspect and altitude on scorpion diversity along an environmental gradient in the Soutpansberg, South Africa. Journal of Arid Environments, 113: 114–120.

González-Alonso, H., & L. F. Armas. 2007. Principales regiones de la biodiversidad cubana. In: González-Alonso, H., editor. Biodiversidad de Cuba. Guatemala: Editorial Polymita, p. 56–69.

Hedges, S. B. 2006. Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Annals of the Missouri Botanical Garden, 93: 231–244.

Heino, J. 2013. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution, 3: 344–355.

Hijmans, R. J. 2019. raster: Geographic Data Analysis and Modeling. R package version 2.9–5. https://CRAN.R–project.org/package=raster. Accessed 10 November 2019.

Hof, C., M. B. Araújo, W. Jetz, & C. Rahbek. 2011. Additive threats from pathogens, climate and land–use change for global amphibian diversity. Nature, 480: 516–519.

Irl, S. D. H., D. E. V. Harter, M. J. Steinbauer, D. Gallego Puyol, J. M. Fernández-Palacios, A. Jentsch, & C. Beierkuhnlein. 2015. Climate vs. topography – spatial patterns of plant species diversity and endemism on a high–elevation island. Journal of Ecology, 103: 1621–1633.

Iturralde-Vinent, M. A., & R. D. E. MacPhee. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238: 1–95.

Jetz, W., D. S. Wilcove, & A. P. Dobson. 2007. Projected impacts of climate and land–use change on the global diversity of birds. PLoS Biology, 5: e157.

Jiménez-Valverde, A., A. Baselga, A. Melic, & N. Txasko. 2010. Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conservation and Diversity, 3: 51–60.

Latham, J., R. Cumani, I. Rosati, & M. Bloise. 2014. Global land cover share (GLC–SHARE) database beta–release version 1.0–2014. FAO: Rome, Italy. Acessed 20 May 2019.

Legendre, P. 2014. Interpreting the replacement and richness difference components of beta diversity: Replacement and richness difference components. Global Ecology and Biogeography, 23: 1324–1334.

Legendre, P., & M. J. Anderson. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monography, 69: 1–24.

Lira, A. F. A., R. Badillo-Montaño, A. Lira-Noriega, & C. M. R. Albuquerque. 2020. Potential distribution patterns of scorpions in north–eastern Brazil under scenarios of future climate change. Austral Ecology, 45: 215–228.

Lira, A. F. A., S. Í. A. Foerster, R. P. Salomão, T. J. Porto, C. M. R. Albuquerque, & G. J. B. Moura. 2021a. Understanding the effects of human disturbance on scorpion diversity in Brazilian tropical forests. Journal of Insect Conservation, 25: 147–158.

Lira, A. F. A., J. C. Araújo, F. N. A. A. Rego, S. Í. A. Foerster, & C. M. R. Albuquerque. 2021b. Habitat heterogeneity shapes and shifts scorpion assemblages in a Brazilian seasonal dry tropical forest. Journal of Arid Environments, 186: 104413.

Lira, A. F. A., L. M. Pordeus, R. P. Salomão, R. Badillo-Montaño, & C. M. R. Albuquerque. 2019b. Effects of anthropogenic land–use on scorpions (Arachnida: Scorpiones) in Neotropical forests. International Journal of Tropical Insect Science, 39: 211–218.

Lira, A. F. A., R. P. Salomão, & C. M. R. Albuquerque. 2019a. Pattern of scorpion diversity across a bioclimatic dry–wet gradient in Neotropical forests. Acta Oecologica, 96: 10–17.

Liu, J., M. Vellend, Z. Wang, & M. Yu. 2018. High beta diversity among small islands is due to environmental heterogeneity rather than ecological drift. Journal of Biogeography, 45: 2252–2261.

Losos, J. B. 2010. Adaptive radiation, ecological opportunity, and evolutionary determinism: American society of naturalists E. O. Wilson award address. The American Naturalists, 175: 623–639.

Mahler, D. L., T. Ingram, L. J. Revell, & J. B. Losos. 2013. Exceptional convergence on the macroevolutionary landscape in Island lizard radiations. Science, 341: 292–295.

Mahler, D. L., L. J. Revell, R. E. Glor, & J. B. Losos. 2010. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean Anoles: opportunity and rate in Anolis lizards. Evolution, 64: 2731–2745.

McArdle, B. H., & M. J. Anderson. 2001. Fitting multivariate models to community data: a comment on distance–based redundancy analysis. Ecology, 82: 290–297.

MacArthur, R. H., & E. O. Wilson. 1967. The theory of island biogeography. Princeton: Princeton University Press.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature, 203: 853–858.

Mittelbach, G. G., & D. W. Schemske. 2015. Ecological and evolutionary perspectives on community assembly. Trends in Ecology & Evolution, 30: 241–247.

Mittermeier, R. A., P. R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. G. Mittermeier, J. Lamoreux, G. A. B. da Fonseca, P. A. Seligmann, & H. Ford. 2005. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions conservation international, Mexico City. Conservation International Edition.

Moura, M. R., F. Villalobos, G. C. Costa, & P. C. A. Garcia. 2016. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients. Plos One, 11: e0152468.

Naimi, B. 2015. usdm: Uncertainty Analysis for Species Distribution Models. URLhttps:// CRAN.R–project.org/package=usdm. R package version 1.1–15.

Nemésio, A., & H. L. Vasconcelos. 2013. Beta diversity of orchid bees in a tropical biodiversity hotspot. Biodiversity and Conservation, 22: 1647–1661.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, et al. 2019. vegan: Community Ecology Package. R package version 2.5–5. https://CRAN.R–project.org/package=vegan. Accessed 20 May 2019.

Padial, A. A., F. Ceschin, S. A. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, J. R. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho, et al. 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PloS One, 9: e111227.

Peres-Neto, P. R., P. Legendre, S. Dray, , & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87: 2614–2625.

Polis, G. A. 1990. The Biology of Scorpions. Stanford: Stanford University Press.

Prendini, L. 2001. Substratum specialization and speciation in southern African scorpion: the effect hypothesis revisited. In: Fet, V. and P. A. Selden, editors. Memoriam Gary A. Polis. Burnham Beeches: British Arachnological Society, p. 113–138.

Prendini, L. 2005. Scorpion diversity and distribution in southern Africa: pattern and process. In: Hubner, B. A., B. Sinclair and K. H. Lampe, editors. African Biodiversity: Molecules, Organisms, Ecosystems. New York: Springer, p. 25–68.

Prendini, L., & T. L. Bird. 2008. Scorpions of the Brandberg Massif, Namibia: Species richness inversely correlated with altitude. African Invertebrates, 49: 77–107.

Qian, H., C. Badgley, & D. L. Fox. 2009. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Global Ecology and Biogeography, 18: 111–122.

Ray-Mukherjee, J., K. Nimon, S. Mukherjee, D. W. Morris, R. Slotow, & M. Hamer. 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution, 5: 320–328.

Richardson, D. M., & R. J. Whittaker. 2010. Conservation biogeography – foundations, concepts and challenges: Conservation biogeography: foundations, concepts and challenges. Diversity and Distribution, 16: 313–320.

Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7: 1–15.

Rodriguez-Artigas, S. M., R. Ballester, & J. A. Corronca. 2016. Factors that influence the beta–diversity of spider communities in northwestern Argentinean Grasslands. PeerJ, 4: e1946.

Rominger, A. J., K. R. Goodman, J. Y. Lim, E. E. Armstrong, L. E. Becking, G. M. Bennett, M. S. Brewer, D. D. Cotoras, C. P. Ewing, J. Harte, et al. 2016. Community assembly on isolated islands: macroecology meets evolution: Community assembly on isolated islands. Global Ecology and Biogeography, 25: 769–780.

Ruggiero, A., & B. A. Hawkins. 2008. Why do mountains support so many species of birds? Ecography, 31: 306–315.

Schluter, D. 2000. The Ecology of Adaptive Radiation. Oxford: Oxford University Press.

Sepkoski, J. J. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4: 223–251.

Simard, M., N. Pinto, J. B. Fisher, & A. Baccini. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 116: G04021.

Socolar, J. B., J. J. Gilroy, W. E. Kunin, & D. P. Edwards. 2016. How Should Beta–Diversity Inform Biodiversity Conservation? Trends in Ecology and Evolution, 31: 67–80.

Soininen, J., J. Heino, & J. Wang. 2018. A meta–analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27: 96–109.

Stein, A., K. Gerstner, & H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17: 866–880.

Teruel, R., & F. Kovařík. 2012. Scorpions of Cuba. Praga: Clairon Production.

Teruel, R., & T. M. Rodríguez-Cabrera. 2020. Revision of the genus Tityopsis Armas, 1974 (Scorpiones: Buthidae). Part 1. General updates and description of four new species. Euscorpius, 304: 1–40.

USGS. 2021. U.S. Geological Survey: Global 30 Arc–Second Elevation (GTOPO30). Accessed 19 November 2021. https://doi.org/10.5066/F7DF6PQS

Valdujo, P. H., A. C. O. Q. Carnaval, & C. H. Graham. 2013. Environmental correlates of anuran beta diversity in the Brazilian Cerrado. Ecography, 36: 708–717.

Vasconcelos, H. L., J. M. S. Vilhena, K. G. Facure, & A. L. K. M. Albernaz. 2010. Patterns of ant species diversity and turnover across 2000 km of Amazonian floodplain forest. Journal of Biogeography, 37: 432–440.

Volschenk, E. S., A. H. Burbidge, B. J. Durrant, & M. S. Harvey. 2010. Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia. Records of the Western Australian Museum, 78: 271–284.

Warburg, M. R., & A. Ben-Horin. 1981. The response to temperature gradients of scorpions from mesic and xeric habitats. Comparative Biochemistry and Physiology, 68: 277–279.

Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, & G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer Science & Business Media.
Sección
Artículos
Derechos de Autor
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Cómo citar

de Araújo Lira, A. F., Araújo Foerster, S. Ítalo, Medeiros DeSouza, A. . y de Armas, L. F. (2022) «Desenredando los patrones de diversidad de los escorpiones cubanos (Arachnida: Scorpiones)», Novitates Caribaea, (19), pp. 72–91. doi: 10.33800/nc.vi19.290.

Métricas del artículo

  • 88 Vistas Resumen vistas
  • 91 Descargas PDF Descargas
  • 10 Vistas Html Vistas
Descargas -
Los datos de descargas todavía no están disponibles.