Gradientes de elevación no afectan la tolerancia térmica a escala local en poblaciones de peces vivíparos del género Limia (Cyprinodontiformes: Poeciliinae)
##plugins.themes.bootstrap3.article.main##
Resumen
Una de las premisas más importantes de la teoría de Janzen acerca del efecto de las elevaciones en la dispersión de las especies es que, debido al bajo solapamiento en los regímenes de temperatura entre un gradiente de elevación en los trópicos, los organismos que habitan en altitudes elevadas desarrollan mayor tolerancia a temperaturas bajas mientras que aquellos que viven en zonas de baja elevación exhiben mayor tolerancia por temperaturas altas. Sin embargo, algunos estudios han cuestionado la generalidad de las premisas y predicciones de esta hipótesis sugiriendo que otros factores no relacionados a los gradientes de temperatura pudieran explicar la distribución altitudinal de muchas especies en los trópicos. En el presente estudio se someten a prueba algunas de las predicciones de la teoría de Janzen a escala local a través del análisis de la amplitud del nicho térmico en poblaciones de peces del género Limia y su relación con la distribución altitudinal de estas especies en algunas islas de las Antillas Mayores. Evaluamos las variaciones en tolerancia térmica a temperaturas extremas [medidas como temperatura crítica mínima (CTmin) y máxima (CTmax)]. Además comparamos el intervalo térmico en poblaciones de ocho especies de este género que habitan en tres islas del Caribe las cuales se distribuyen en diferentes altitudes. Nuestros resultados muestran que existen diferencias tanto en los límites como en los intervalos de temperatura entre las especies analizadas. Generalmente, las especies distribuidas en altas y bajas elevaciones no muestran diferencias en sus límites térmicos y por lo general estas especies exhiben un amplio intervalo de tolerancia térmica. Sin embargo, las especies que habitan en elevaciones medias muestran un intervalo más estrecho de tolerancia térmica. Los análisis filogenéticos no explican los patrones observados en este estudio. Nuestro análisis no provee evidencia que soporte la teoría de Janzen a escala local en peces del género Limia ya que la tolerancia térmica y distribución altitudinal de las especies no están relacionadas con los gradientes de temperatura esperados en condiciones naturales. Sugerimos que factores abióticos tales como interacciones inter-específicas o especializaciones en la dieta, deben ser considerados para la interpretación de los patrones de distribución en peces del género Limia.
##plugins.themes.bootstrap3.article.details##
Caribe, elevación, distribución de especies, temperatura
Beitinger, T. L., W. A. Bennett, & R. W. McCauley. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58: 237–275.
Buckley, L. B., & R. B. Huey. 2016. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Global Change Biology, 22: 3829–3842. https://doi:10.1111/gcb.13313
Burgess, G. H., & R. Franz. 1989. Zoogeography of the Antillean freshwater fish fauna. In: Woods, C. A. & F. E. Sergile (Eds) Biogeography of the West Indies: Patterns and Perspectives. CRF Press, Boca Raton FL, 263–304.
Carvajal-Quintero, J. D., F. Escobar, F. Alvarado, F. A. Villa-Navarro, U. Jaramillo-Villa, & J. A. Maldonado-Ocampo. 2015. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution, 5 (13): 2608–2620.
Chanthy, P., R. J. Martin, R. V. Gunning, & N. R. Andrew. 2012. The effects of thermal acclimation on lethal temperatures and critical thermal limits in the green vegetable bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Frontiers in Physiology, 3: 465. https://doi:10.3389/fphys.2012.00465
Coelho, M. T. P., J. F. B Rodrigues, J. A. F. Diniz-Filho, & T. F. Rangel. 2019. Biogeographical history constrains climatic niche diversification without adaptive forces driving evolution. Journal of Biogeography, 46: 1020–1028. https://doi:10.1111/jbi.13553
Cowles, R. B., & C. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83: 265–296.
Culumber, Z. W., D. B. Shepard, S. W. Coleman, G. G. Rosenthal, & M. Tobler. 2012. Physiological adaptation along environmental gradients and replicated hybrid zone structure in swordtails (Teleostei: Xiphophorus). Journal of Evolutionary Biology, 25: 1800–1814.
Fischer, C., & I. Schlupp. 2009. Differences in thermal tolerance in coexisting sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei). Journal of Fish Biology, 74: 1662–1668. https://doi:10.1111/j.1095-8649.2009.02214.x
Ghalambor, C. K., R. B. Huey, P. R. Martin, J. J. Tewksbury, & G. Wang. 2006. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integrative and Comparative Biology, 16 (1): 5–17. https://doi.org/10.1093/icb/icj003
Gilbert, P. S., J. Wu, M. W. Simon, J. S. Sinsheimer, & M. E. Alfaro. 2018. Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Molecular Phylogenetics and Evolution, 126: 116–128. https://doi:10.1016/j.ympev.2018.03.033
Gingras, B., E. Mohandesan, D. Boko, & W. F. Tecumseh. 2013. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. BMC Evolutionary Biology, 13: 134. https://doi.org/10.1186/1471-2148-13-134
Graham, C. H, A. C. Carnaval, C. D. Cadena, K. R. Zamudio, T. E. Roberts, & J. L. Parra. 2014. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 37: 711–719. https://doi.org/10.1111/ecog.00578
Griffis, M. R., & R. G. Jaeger. 1998. Competition leads to an extinction–prone species of salamander: interspecific territoriality in a metapopulation. Ecology, 79: 2494–2502.
Hamilton, A. 2001. Phylogeny of Limia (Teleostei: Poeciliidae) based on NADH dehydrogenase subunit 2 sequences. Molecular Phylogenetics and Evolution, 19 (2): 277–289. https://doi:10.1006/mpev.2000.0919
Hijmans, R. J. 2020. Raster: Geographic Data Analysis and Modeling. R package version 3.0–12. https://CRAN.R–project.org/package=raster (accessed: 06/20/2020).
Hua, X. 2016. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen’s hypothesis. Proceedings Biological Sciences, 283 (1835): 20160349. https://doi.org/10.1098/rspb.2016.0349
Janzen, D. H. 1967. Why mountain passes are higher in the tropics. American Naturalist, 101: 233–247. https://doi.org/10.1086/282487
Jaramillo-Villa, U., J. A. Maldonado-Ocampo, & F. Escobar. 2010. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. Journal of Fish Biology, 76: 2401–2417. https://doi.org/10.1111/j.1095-8649.2010.02629.x
Kamilar, J. M., & N. Cooper. 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society of London Biological Sciences, 368: 20120341. http://dx.doi.org/10.1098/rstb.2012.0341
Kingsolver, J. G., & J. Umbanhowar. 2018. The analysis and interpretation of critical temperatures. Journal of Experimental Biology, 2018 (221). https://jeb167858. doi:10.1242/jeb.167858
Layne, J. R. Jr., & D. L. Claussen. 1982. The time courses of CTMax and CTMin acclimation in the salamander Desmognathus fuscus. Journal of Thermal Biology, 7 (3): 139–141.
Leiva, F. P., P. Calosi, & W. C. E. P. Verberk. 2019. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water–and air–breathers. Philosophical Transactions of the Royal Society of London Biological Sciences, 374: 20190035. http://dx.doi.org/10.1098/rstb.2019.0035
Lowe, C. H., & V. J. Vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science, 122: 73–74.
Lutterschmidt, W. I., & V. H. Hutchison. 1997. The critical thermal maximum: data to support the onset of muscle spasm as the definitive end point. Canadian Journal of Zoology, 75: 1553–1560.
McCain, C. M. 2009. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecology Letters, 12: 550–560. https://doi.org/10.1111/j.1461 0248.2009.01308.x
Molina-Venegas, R., & M. A. Rodriguez. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology, 17 (53): 1–10.
Moyano, M., C. Candebat, Y. Ruhbaum, S. Alvarez-Fernandez, G. Claireaux, J. L. Zambonino- Infante, & M. A. Peck. 2017. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. Plos One, 12 (7): e0179928. https://doi.org/10.1371/journal.pone.0179928
Munkemueller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schiffers, & W. Thuiller. 2012. How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3: 743–756. https://doi:10.1111/j.2041-210X.2012.00196.x
Muñoz, M. M., J. E. Wegener, & A. C. Algar. 2014. Untangling intra– and interspecific effects on body size clines reveals divergent processes structuring convergent patterns in Anolis lizards. American Naturalist, 184: 636–646.
Muñoz, M. M., & B. L. Bodensteiner. 2019. Janzen’s hypothesis meets the Bogert effect: Connecting climate variation, thermoregulatory behavior and rates of physiological evolution. Integrative Organismal Biology, 1–12. https://doi:10.1093/iob/oby002
Navas, C. A. 1996. Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia, 108: 617–626. https://doi.org/10.1007/BF00329034
Navas, C. A., J. M. Carvajalino?Fernández, L. P. Saboyá?Acosta, L. A. Rueda?Solano, & M. A. Carvajalino?Fernández. 2013. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data. Functional Ecology, 27: 1145–1154. https://doi.org/10.1111/1365-2435.12106
Niehaus, A. C., M. J. Jr. Angilletta, M. W. Sears, C. E. Franklin, & and R. S. Wilson. 2012. Predicting the physiological performance of ectotherms in fluctuating thermal environments. Journal of Experimental Biology, 215: 694–701. https://doi:10.1242/jeb.058032
Ohlberger, J., T. Mehner, G. Staaks, & F. Hölker. 2008. Temperature?related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Functional Ecology, 22: 501–508.
Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London Biological Sciences, 255: 37–45. https://doi:10.1098/rspb.1994.0006
Payne, N. L., J. A. Smith, D. E. van der Meulen, M. D. Taylor, Y. Y. Watanabe, A. Takahashi, T. A. Marzullo, C. A. Gray, G. Cadiou, & I. M. Suthers. 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology, 30 (6): 903–912. https://doi.org/10.1111/1365-2435.12618
Pintanel, P., M. Tejedo, S. R. Ron, G. A. Llorente, & A. Merino-Viteri. 2019. Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. Journal of Biogeography, 46: 1664–1675. https://doi.org/10.1111/jbi.13596
Polato, N. R., B. A. Gill, A. A. Shah, M. M. Gray, K. L. Casner, A. Barthelet, & K. R. Zamudio. 2018. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proceedings of the National Academy of Sciences, 115: 12471–12476. https://doi. org/10.1073/pnas.18093 26115
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R–project.org/.
Revell, L. J. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3: 217–222. https://doi:10.1111/j.2041– 210X.2011.00169.x
Rivas, L. R. 1980. Eight new species of poeciliid fishes of the genus Limia from Hispaniola. Northeast Gulf Science, 4 (1): 28–38.
Robinson, S. K., & J. Terborgh. 1995. Interspecific aggression and habitat selection by Amazonian birds. Journal of Animal Ecology, 64: 1–11.
Rodríguez, C. M. 1997. Phylogenetic analysis of the tribe Poeciliini (Cyprinodontiformes: Poeciliidae). Copeia, 1997 (4): 663–679.
Rodriguez-Silva, R., P. Torres-Pineda, & J. Josaphat. 2020. Limia mandibularis, a new livebearing fish (Cyprinodontiformes: Poeciliidae) from Lake Miragoane, Haiti. Zootaxa, 4768 (3): 395–404. https://doi.org/10.11646/zootaxa.4768.3.6
Rodriguez, R. S., P. Torres-Pineda, C. M. Rodriguez, & I. Schlupp. 2020. Distribution range extension of Yaguajal Limia, Limia yaguajali (Teleostei: Poeciliidae) from north of the Dominican Republic, Hispaniola. Novitates Caribaea, 15: 127–133.
Sarmiento, G. 1986. Ecological features of climate in high tropical mountains. (11–46). In: Vuilleumier, F., & M. Monasterio (Eds.). High altitude tropical biogeography. Oxford University Press, New York, 649 pp.
Snyder, G. K., & W. W. Weathers. 1975. Temperature adaptations in amphibians. American Naturalist, 109: 93–101.
Spotila, J. R. 1972. Role of temperature and water in the ecology of lungless salamanders. Ecological Monographs, 42 (1972): 95–125.
Sunday, J. M., A. E. Bates, & N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of Biological Sciences, 278: 1823–1830.
Tongnunui, S, & F. W. H. Beamish. 2017. Critical thermal maximum, temperature acclimation and climate effects on Thai freshwater fishes. Environment Asia, 10 (1): 109–117.
Valdivieso, D., & J. R. Tamsitt. 1974. Thermal relationships of the neo– tropical frog Hyla labialis (Anura: Hylidae). Life Sciences Occasional Papers Royal Ontario Museum, 26: 1–10.
Van Berkum, F. H. 1988. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. American Naturalist, 132: 327–343.
Weaver, P. F., O. Tello, J. Krieger, A. Marmolejo, K. F. Weaver, J. V. Garcia, & A. Cruz. 2016a. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae). Biology Open, 5: 1093–1101.
Weaver, P. F, A. Cruz, S. Johnson, J. Dupin, & K. F. Weaver. 2016b. Colonizing the Caribbean: biogeography and evolution of livebearing fishes of the genus Limia (Poeciliidae). Journal of Biogeography, 43: 1808–1819. https://doi:10.1111/jbi.12798
Wollenberg, K. C., I. J. Wang, R. E. Glor, & J. B. Losos. 2013. Determinism in the diversification of Hispaniolan trunk–ground anolis (Anolis cybotes species complex). Evolution, 67: 3175–3190. https://doi.org/10.1111/evo.12184
Yanar, M., S. Erdo?an, & M. Kumlu. 2019. Thermal tolerance of thirteen popular ornamental fish species. Aquaculture, 501: 382–386. https://doi.org/10.1016/j.aquaculture.2018.11.041
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Cómo citar
Métricas del artículo
- 2838 Vistas Resumen vistas
- 318 Descargas PDF Descargas
- 59 Vistas Html Vistas